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Abstract
We investigate the behavior of interacting one-dimensional systems using linear (close to
equilibrium) and non-linear transport measurements of split-gate quantum wires of varying
channel length. Our measurements reveal a remarkable resonance effect in the differential
conductance, which exhibits a pronounced peak, for a narrow range of source–drain voltage, at
the transition from tunneling to open transport. This peak becomes more pronounced with
increase of channel length, but is rapidly suppressed by increase of temperature or (in-plane)
magnetic field. We believe that these unique features may arise from the dependence of
transport on the electron density of states, and suggest a phenomenological model to account
for this transport behavior.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The investigation of ballistic transport in one-dimensional (1D)
systems has been started from the discovery of quantization of
their conductance as step-features in unit of 2e2/h [1, 2]. This
phenomenon is well understood by the single-particle notation
of the Landauer formula, which predicts that the conductance
in 1D should depend only on the number of occupied subbands.
On the other hand, one other unique property of 1D systems
concerns the form of their density of states (DOS), which
exhibits van Hove singularities due to the opening of each
subband. The experiment of scanning ‘tunneling’ spectroscopy
for 1D carbon nano-tube clearly shows this kind DOS by the
differential conductance measurement [3]. In the case of open
(i.e. not tunneling) transport phenomena, however, the energy
dependence of the 1D DOS is well known to be canceled by
that of the electron group velocity. In other word, the large
contributions on currents from ‘large group velocity’ electrons
are trade-off with their ‘small 1D DOS’. This is one important
reason of appearance of ‘step-like’ quantized conductance.

Research on interacting 1D systems started well
before the discovery of the 1D conductance quantization,
with the pioneering theoretical studies of Tomonaga and
Luttinger [4, 5]. The strictly one-dimensional, strongly
confined, carrier system that these authors considered have
come to be referred to as the Tomonaga–Luttinger liquid
(TLL). This unique system exhibits strong modifications to
its momentum distribution function, reflecting the role of
long-range interactions and the breakdown of the quasi-
particle description. The characteristic feature of the TLL is
that it exhibits a power-law dependence on various physical
parameters, under conditions of low-energy excitation. The
experimental observation of this power-law behavior was
first provided in studies of the temperature-dependent
conductance of semiconductor quantum wires (QWs) at
zero magnetic field [6] and in the fractional-quantum-Hall
regime [7, 8]. More recently, detection of the TLL state
has been reported in photoemission studies of single-walled
carbon nanotubes, which function as naturally-formed one-
dimensional conductors [9], by measuring the energy of
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Figure 1. Main-panel: the quantized conductance of the three QWs at different temperatures: 4.2 K (left), 1.8 K (middle) and 0.2 K (right).
The curves have been shifted by: 150 nm: 0.1 V for 1.8 K, 450 nm: 0.1 V for 4.2 K, 600 nm: 0.05 V for 1.8 K and 0.1 V for 0.2 K. Insets:
scanning electron micrographs of the QW gate patterns.

electrons ejected from their states. Such results indicate that
the TLL is truly an important phenomenon in real systems,
in spite of the purely theoretical models that were used to
construct the main results of TLL theory in the 1950s.

In addition to evidence of TLL behavior, other many-
body effects have also been discovered in QWs during the
last decade or so. The realizatition of the significance of
the 0.7 feature [10] provides one of the most important
examples of this work, as demonstrated by the diverse group
of papers that are collected together for this special issue.
These studies suggest that this phenomenon may be related
to a spontaneous (either static or dynamic) spin polarization
of carriers in the 1D channel, in the limit where the carrier
density is about to vanish. In the dynamical picture of spin
polarization, a quantum-dot (QD) like feature is believed to
form in the self-consistent potential of the QW, leading to
the realization of a bound state that can localize a single
spin [11, 12]. According to this model, a Kondo effect,
caused the dynamically-localized spin moment, is believed
to responsible for the smearing of the 0.7 feature near zero
bias at low temperatures [13, 14]. There have been many
studies [15–27] that have investigated the dependence of the
0.7 feature on parameters including temperature, magnetic
field, carrier density, channel length, confinement potential,
and the nature of the geometrical connections of the QW
to its reservoirs. Most recently, we have provided evidence
for the formation of a bound state near pinch-off, using
coupled quantum point contacts to detect the resulting spin
localization [28]. In spite of this progress, however, the
microscopic origins of this phenomenon remain unclear,
suggesting that new experimental approaches to this problem
are needed to clarify this issue.

In this paper, we describe another effect that appears in the
conductance of QWs, in the same low-density regime in which
other many-body effects are observed. Unlike the 0.7 feature,
the manifestations of many-body interactions that we discuss
are present under strong non-linear conditions. Specifically,
we find that the differential conductance of our QWs shows
a strong resonant enhancement over a narrow range of the
source–drain voltage (Vsd), an effect that becomes more
pronounced as the length of the QW is increased [29]. Based

on a detailed analysis of the linear and differential conductance
of these QWs, we suggest a phenomenological model for our
observations in which transport should be dependent on the
manifested 1D DOS as proportional to C × (1/En), here C
is constant as C > 1 and n is index as n > 0.5, by many-body
effect in low carrier densities, when the reservoirs align with
the band edge of ground state after formation of energy gap
near zero bias voltages.

2. Sample preparation and measurement setup

QWs of different length (150- , 450- and 600 nm) were
realized in the two-dimensional electron gas (2DEG) of a
modulation-doped GaAs/AlGaAs heterostructure, by applying
a gate voltage (Vg) to split gates (see figure 1) on the top surface
of the same Hall-bar mesa. We note here the lithographic
pattern of these gates, which consists of a uniform channel of
constant width without any deliberate adiabatic connection to
the 2DEG reservoirs. The 2DEG was located 75 nm below
the top surface of the heterostructure and had a density of
2.1 × 10−11 cm−2 and a mobility of 1.1 × 106 cm2 V−1 s−1

(both at 4.2 K). The split gates were separated from each other
by a lateral distance of 20 µm, significantly longer than the
mean-free path of the 2DEG (9.1 µm). Using this multi-
QW device, we can therefore make meaningful comparisons
of the length dependence of the transport properties, while
avoiding substrate-dependent variations of behavior. Electrical
measurements of the linear conductance (we denote this
conductance as G(Vg)) were performed using the sufficient
small ac excitation (30 µV rms) from a lock-in amplifier, while
combined ac + dc excitation was used for direct measurements
of the differential conductance dI/dVsd (denoted as g(Vsd) for
fixed Vg, or g(Vg) for fixed Vsd). The differential conductance
represents the local slope of the I –V curve at each applied
Vsd. Consequently, the linear and differential conductance
differ in the case where the I –V curve exhibits any non-linear
form. The sample was mounted in the mixture of a dilution
refrigerator and the measurement temperature was varied from
0.2 to 13 K. Magnetic field could also be applied in the same
plane as the 2DEG substrate.
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Figure 2. (a) g(Vsd) of the 450 nm QW at 0.2 K. Each curve corresponds to differential conductance measured for fixed Vsd. The solid and
dashed bold curves are discussed in the text. (b) The three-dimensional plot of g(Vg) with 0.1 mV steps in Vsd bias.

Figure 3. Three-dimensional plots of g(Vsd) of the (a) 150 nm, (b) 450 nm, and (c) 600 nm QWs with 2.0- (150- and 450 nm) and 1.5 mV
(600 nm) steps in Vg.

3. Experiment results

The quantized linear conductance of the different QWs (with
zero dc bias) is shown at several temperatures in figure 1.
At the lowest temperature (0.2 K), the conductance steps are
well resolved due to the suppression of thermal smearing.
While these steps are weakened with increasing temperature,
the 0.7 feature becomes more clearly resolved in the 450- and
600 nm QWs. The robustness against increase of temperature
should be related to the energy level spacing due to lateral
confinement, at the bottleneck in the potential profile [19].
The temperature insensitivity of the conductance steps in the
150 nm QW therefore likely comes from a large energy spacing
due to a steep parabolic potential. (This is also consistent with
the stability of the conductance plateaus as Vsd is varied; as
we will show in figure 3, the 150 nm device exhibits a large
stable plateau in this differential conductance.) The 450- and
600 nm wires show weak conductance fluctuations that are
thought to be caused by quantum interference and impurity
scattering [30]. All of these results are consistent with previous

reports by other groups on transport in ballistic and weakly-
disordered wires.

Rather than the linear conductance, the differential
conductance plays an important role in this study, by providing
detailed information on the internal microscopic state of
the QWs. It is known quite generally that the differential
conductance provides information on the DOS of conductors.
In the discussion of linear transport in one-dimensional
conductors, as mentioned already, the energy dependence of
the DOS is canceled by that in the group velocity when
calculating the channel current. This cancelation is also
thought to extend to the discussion of non-linear transport, in
which the finite bias present can cause unequal populations
of the one-dimensional subbands by the source and drain,
leading to the observation of so-called ‘half plateaus’ [31, 32].
Consequently, the differential conductance is a powerful tool
for investigating the reservoir-induced filling of energy levels
in one-dimensional systems. To illustrate this, figure 2(a)
shows g(Vsd) for the 450 nm wire at 0.2 K, and at a series
of different gate voltages (2.0 mV steps). At Vsd = 0 V,
these curves show a bunching at 2e2/h that corresponds to the
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Figure 4. (a) The temperature dependence of the g(Vg) peaks in the 450 nm QW, measured for a source–drain bias of Vsd = 2.2 mV and for a
change of temperature from 0.2 to 13 K. The thick colored curves correspond to 0.2 K, 0.5 K, 1.0 K, and 13 K from high to low gVg,
respectively. The arrows with symbols indicate the gate voltage of each plotted in (b). (b) The temperature dependence of the differential
conductance at the gate voltages denoted by the corresponding symbols in (a). The power-law indexes of each data set are indicated at the top
of the figure.

conductance plateau observed at a similar value in the linear
conductance (see figure 1). Very different behavior is seen
at finite Vsd, however, where there are two roughly-symmetric
peaks that rise rapidly to a value significantly exceeding 2e2/h.
In the clearest manifestation of this behavior, as indicated by
the solid bold curve in the figure, one of these peaks exceeds
2×2e2/h, even though the zero-Vsd conductance is completely
pinched-off. With increase of the zero-Vsd conductance,
however, the resonances are rapidly suppressed (see the
dashed bold curve).

For more detailed information on the unusual resonant
behavior noted in figure 2(a), it is helpful to represent g(Vg) as
a three-dimensional contour. Figure 2(b) shows such a contour
for the 450 nm QW, which was constructed by incrementing
Vsd in 0.1 mV steps. From this contour, we see that g(Vg) does
not change much as the dc bias is increased from 0 to 0.7 mV.
At 0.8 mV, however, an additional shoulder-like structure is
formed close to pinch-off. This structure grows with further
increase of g(Vg), ultimately splitting into two pronounced
peaks whose amplitude can be seen to approach 4 × 2e2/h
in this slow sweep. In addition to these two peaks, at the high-
bias end of the contour, we an also clearly observe what appear
to be weak, higher order, replicas of this effect, which smear
the half plateau at 1.5 × 2e2/h.

The g(Vsd) spectra of the three different QWs are shown
in figure 3. The flat part of the center region in each plot
corresponds to the expected integer plateau at 2e2/h. The
150 nm QW shows this region most clearly, which is consistent
with the robustness of the linear conductance to temperature
noted in figure 1. With regards to the resonant peaks at
finite Vsd, these exhibit a clear evolution, becoming more
pronounced with increase of the channel length. In the case
of the 600 nm wire, the resonant peaks exceed 3 × 2e2/h.
Consistently, for all three QWs, however, the resonant peaks
appear at the transition between pinch-off and the onset of
open conduction. In the case of the 450 nm wire, it is clear
that applying large Vsd (in excess of a few mV) suppresses

the resonances, and that no additional resonances are observed
either when the gate confinement is increased beyond pinch-
off. Since the effect of both of these variations will tend to
be to introduce distortions, or asymmetries, in the confining
potential of the QW, they may suppress the one-dimensional
character of the wires. On the other hand, the 600 nm wire
shows the resonant peaks much more robustly, which may
reflect the fact that the 1D channel is more well defined in
this longer device. The suggestion of these results (length
dependence and sensitivity to Vg and Vsd) therefore seems to be
that the 1D electron confinement plays a critical role in giving
rise to this resonance phenomenon.

To obtain further information on the origins of the
resonant peaks, we have measured their temperature (T )
dependence at fixed Vsd. Figure 4(a) shows the evolution
of g(Vg) for the 450 nm wire (Vsd = 2.2 mV), as the
temperature is varied from 0.2 to 13 K. The peaks show a
sensitive temperature dependence, decreasing quickly as the
temperature is increased. They eventually disappear around
2 K, while the quantized conductance plateaus only vanish
around 13 K (figure 4(b)). To express this behavior more
quantitatively, we have chosen the points indicated by the
arrows with associated symbols in figure 4(a), and plotted
the temperature dependence of the conductance at these gate
voltages. These four points correspond to the main peak
(circles), the second peak (squares), a point intermediate
between both peaks (diamonds), and a background point
away from these resonances (triangles). The quantitative
temperature dependence at all four of these gate voltages
corresponds well to a power-law variation, at least away from
saturated regions at both ends of the temperature range. For
the data represented by circles, squares and diamonds, the
index of the power-law variation appears to be quite similar,
at least within the experimental uncertainty. An average of the
index obtained for these three points yields 0.65±0.09, clearly
distinct from the much lower index describing the variation of
the background conductance, Although we have not measured
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Figure 5. (a) The in-plane magnetic-field dependence of the differential conductance for the 450 nm QW at a source–drain voltage of 2.4 mV
and at 0.2 K. The different curves correspond to 0, 0.05, 0.15, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, and 6 T. (b) The in-plane magnetic-field
dependence of the peak height for the largest peak at 0 T.

Figure 6. (a) The I–V characteristics of the 450 nm QW for various fixed gate voltages at 0.2 K. The dotted curve corresponds to the case
where the peak in the differential conductance is clearly developed. (b) A three-dimensional plot of the I–V characteristics of the 600 nm QW
at 0.2 K. The flat regions around zero bias voltage correspond to the pinch-off regime, and the regions of steeply-increasing current that bound
this regime yield the strong peaks in the differential conductance.

the temperature dependence for the 600 nm in detail, we expect
that the resonances exhibited by this device should exhibit a
larger power index since its resonances are clearly very much
larger than those exhibited by the 450 nm QW (figure 3).

Application of a magnetic field in the same plane as the
2DEG should induce a Zeeman energy shift, without giving
rise to any cyclotron force. The response of the resonant
peaks to such a magnetic field is shown in figure 5(a), in
which the field is increased from 0 to 6 T. We focus here
on the magnetic-field dependence of same peak investigated
in our temperature-dependent studies. This peak is rapidly
suppressed with application of the magnetic field, as we show
quantitatively in figure 5(b). Our results reveal a parabolic shift
of the pinch-off condition at high magnetic fields, which is
likely a manifestation of the well-known diamagnetic shift of
the 2DEG two-dimensional subband-edge [33]. We also note
the appearance and disappearance of sub-peaks as a function
of the magnetic field. The origin for these features is not
clear at present and further investigations are needed to fully
understand the influence of the magnetic field.

4. Discussions and conclusions

We believe that an important key to understanding the
resonance phenomenon we have described is to connect it to
the local slopes that appear in the source–drain current–voltage
(I –V ) characteristics of the QWs. In figure 6(a), we show
these characteristics for the 450 nm wire, for the range of
Vg corresponding to the transition from pinch-off to beyond
the 2e2/h plateau in the linear conductance. The bunching
of curves indicates this quantized plateau, while the constant
slope seen for all curves at higher bias corresponds to the half
plateau (at e2/h) in the differential conductance. In addition,
several curves can be seen with a steep slope near 2 mV (as we
indicate using the dashed bold curve in figure 6(a)). The
temperature dependence shown in figure 4 corresponds exactly
to the variation of the local slope in each curve at Vsd = 2.2 mV
(dotted line in figure 6(a)). The differential conductance peaks
correspond to these steep regions and in the 600 nm wire these
regions are more clearly resolved. This can be seen in the
contour plot for this device in figure 6(b). The flat part of the
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Figure 7. (a) The temperature dependence of the I–V characteristic of the 600 nm wire at fixed gate voltage. The different temperatures are
indicated with the bold (4.2 K), dashed (1.8 K) and dotted (0.2 K) curves. The energy scale corresponding to a change of thermal energy from
4.2- to 0.2 K is indicated on the figure. (b) The selected peaks for comparison the line shapes. These have asymmetric line shape similar the
1D DOS in both sides Vsd.

contour corresponds to the pinch-off regime, which is bounded
on both sides by steep regions that yield the sharp peaks in the
differential conductance.

The temperature dependence of the I –V characteristics in-
dicates more clearly the essence of the resonance phenomenon,
as we indicate in figure 7(a). The three curves in this figure
were measured for fixed gate voltage, at 4.2 (bold line), 1.8
(dashed line) and 0.2 K (dotted line). At higher biases, the cur-
rent becomes independent of temperature and all three curves
fall on top of each other, indicating that in this limit the current
flowing through the wire is determined by the applied bias. At
lower biases, however, the line shape is sensitive to decrease of
temperature. This low-temperature behavior contains two sig-
nificant features, one of which is the steep feature mentioned
above, and the other of which is the apparent opening of an en-
ergy gap near zero bias, as revealed by the strong suppression
of current.

The existence of steep features in I –V characteristics, due
to the opening of an energy gap, is well known from the field
of superconductivity, in particular from the study of tunneling
in superconductor/insulator/normal metal junctions. This
phenomenon can be understood as arising from quasi-particle
tunneling from the Fermi surface of the normal metal, to the
superconducting state, via the huge DOS that exists at the edge
of the energy gap. In this situation, the differential conductance
directly reflects the resonance in the DOS. Although this
system is of completely different origin to the one that we
study, we nonetheless suggest that the steep increase of current
that we observe is also caused by the onset of transport via
the large DOS of the confined 1D system. This idea is
supported by the asymmetric line shape of g(Vsd), which
exhibits considerable similarity with the non-interacting 1D
DOS as shown in figure 7(b). In this picture, as the gate voltage
is varied from pinch-off towards the onset of conduction, the
electrochemical potential of the biased reservoir firstly reaches
the lower edge of 1D DOS and generates the large resonance
reflected singularity of DOS. With increase of the applied
bias, the resonance then gradually decreases, following the

decrease of the DOS and yielding the asymmetric resonance
line shapes. Although we cannot conclusively justify this
speculation, we nonetheless believe that the large resonant
peaks, exceeding 2e2/h, and the channel-length dependence of
this effect, support an interpretation in terms of the 1D DOS.

It is particularly important to emphasize here that the size
of the gap, which we can infer to be nearly 3 meV from the
0.2 K data in figure 7(a), is much larger than the thermal energy
available at 4.2 K (∼0.3 meV as shown in figure 7(a)). This
indicates that the effect of decreasing temperature is more than
to simply decrease the thermal broadening. To understand
the additional effect of temperature, a comparison of the
linear conductance at two very different temperatures, and the
contour map of figure 3(b), are shown together in figures 8(a)
and (b). Figure 8(a) shows that reducing temperature decreases
the smearing of the linear conductance lineshape, consistent
with findings in previous studies [10, 13, 15, 19, 23]. Indeed,
the higher conductance regions show fixed crossing points at
1.5 × 2e2/h and 2.5 × 2e2/h. The lowest fixed point is,
however, displaced significantly from its expected value at
0.5 × 2e2/h, indicating that the low-temperature conductance
is suppressed near the pinch-off region. We can see this effect
more clearly in the 2D contour plot of g(Vsd, Vg) in figure 8(b).
In figures 8(c)–(h) we show schematic images of the energy
diagrams for the various points indicated in figure 8(b).
The 2e2/h integer plateau in the differential conductance
corresponds roughly to the diamond-shaped region enclosed by
the dashed lines (e.g. [13, 19, 31]). The flattest portion of this
region occurs at Vg ∼ −1.01 V, and the dashed line diamond
in figure 8(b) is centered at this gate voltage. The contour
plot shows that the conductance near zero bias does not vary
symmetrically inside of this region, but is rapidly suppressed
when the gate voltage is made more negative than −1.01 V. The
contour shows that the conductance is completely suppressed
for the band alignment corresponding to that of figure 8(d).
We also note in the contour plot how it is possible to draw
(dotted) lines from the pinch-off condition at higher source–
drain bias, which intersect the vertex of the abovementioned
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Figure 8. (a) A comparison of the linear conductance of the 450 nm QW at 1.5- and 0.2 K. The horizontal grid lines indicate the values of
1.5- and 2.5 × 2e2/h and the vertical lines indicate the crossing points of the two-different temperature curves. The 1.5 K is shifted to
+0.02 V. (b) Contour plot of g(Vsd) as a function of Vg and Vsd, measured in the 450 nm at 0.2 K (figure 3(b)). The diamond shape formed by
the dashed lines represents the extrapolated shape expected for the integer plateau at 2e2/h in the absence of the resonance features. The
dotted lines are linear extrapolations that are drawn from the left vertex of the diamond-shaped area and which follow the boundary of the
pinch-off region. (c)–(h) Schematic pictures showing the energy of the 1D channel and the reservoirs for each point indicated in the main
panel of (b).

diamond at Vsd = 0 V. In this sense, we see that the rapidly
suppressed conductance close to the vertex of the diamond
corresponds to the appearance of a gap that is larger than
the thermal energy as shown in figure 8(g) (the conductance
drops to zero several meV faster than we would expect from
the extrapolations based on the dotted lines). The steep
increase in the I –V curves, and the corresponding differential
conductance peaks, are observed when one reservoir aligns
with the energy state modified by the formation of the energy
gap as shown in figure 8(h).

We believe that standard single-particle notions of
transport are insufficient to account for the unusual behavior
that we have reported here. It is, of course, well known that
tunneling via impurity sites, or accidentally-formed QDs, can
give rise to conductance resonances in QWs whose properties
are determined by the Coulomb blockade of transport [34–39].
The amplitude of the resulting Coulomb resonances (or
oscillations) as gate voltage is varied typically much smaller
than what we observe in our experiment, however. The
formation of such unintentional QDs typically furthermore
results in the observation of a series of quasi-regular Coulomb
oscillations, while we always only observe a single resonance
as the gate voltage is swept at fixed Vsd. Moreover, the
Coulomb resonances are seen in the linear conductance of
the QWs, in marked contrast to the behavior found here. To
further discount the possibility of some unintentional impurity
effect, we have also investigated how asymmetric gate biasing
(e.g. Vg = −1.8 and −0.4 V applied on the 450 nm wire)
influences the resonances, and find their characteristics to be
unaffected by this in all asymmetric measurement. As a
further indication that the resonance phenomenon which we
observe does not result from simple Coulomb charging, we
note that the zero bias peak in the differential conductance

of unintentional QDs is typically symmetric [39], something
which we never observe for our resonance. While non-linear
transport via QD states can be well understood in terms of the
contributions from resonant tunneling and inelastic processes,
it is difficult to apply such concepts to explain the strong
resonant enhancement of the differential conductance reported
here. Transport via higher two-dimensional subbands of the
electron gas can also be ruled out as the origin of the resonance
phenomenon [40, 41]. If the peaks did indeed correspond to
the process of populating such higher levels, the conductance
should exhibit quantized plateaus in integer units of 2e2/h. It is
clear in figure 3, however, that the conductance shows plateaus
at 1- and 2 × 2e2/h, even when the resonance is seen near
the onset of conduction. Finally, we note that simple quantum
interference, or other scattering, processes should not have
the effect of enhancing the conductance beyond the quantized
value at finite bias.

While the origin of the resonant features that we observe
remains to be resolved, we can identify their important
phenomenological properties. (1) The effect is enhanced in
longer channels and at lower temperatures. This indicates
that one-dimensional phenomena may play an important role
in giving rise to the resonances. (2) The peaks in the
differential conductance originate from the presence of regions
with steep slopes in the I –V characteristics. These strong
enhancements of current should be caused by transport via the
large singularity in the 1D DOS. (3) The strongly suppressed
current at lower temperatures indicates the opening of an
energy gap near zero bias in the pinch-off region. This
energy gap is clearly signified by an additional suppression of
the zero bias conductance near pinch-off at low temperature.
The conductance resonances appear at both sides of this
gap structure. If the energy gap arose from a simple
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shift of the subbands to higher energy, the temperature-
dependent I –V curves should not merge in the higher bias
range. Therefore, we should consider that the formation of
an energy gap is responsible for the manifestation of DOS
structure in the conductance resonances. (4) The power-
law temperature dependence, as well as the magnetic-field
dependence, indicates a strong sensitivity to environmental
fields. These facts also support the possibility of the 1D
interaction as the origin, possibly involving spin on the basis
of the magnetic-field behavior.

Here, we wish to suggest a speculative model to account
for the unusual non-linear transport behavior we observe in
experiment. In this model, we consider that electrons near
the band edge of the ‘original’ ground state are shifted and
redistributed to a higher energy level formed by the appearance
of the energy gap. Due to conservation of the total number of
states, the resulting DOS should have a larger value near the
band bottom than that expected from the usual free-electron
form (1/E0.5). We therefore suggest that the DOS in this
region can be described as C/En , where the constant C > 1
and the index n > 0.5. When conduction occurs via this
modified DOS, the current should be proportion to 1/E (n−0.5)

and so should exhibit a singularity at the band edge. The
inferred energy gap formation, and the strong differential
conductance peaks observed in experiment, can be understood
within this phenomenological model. As to the origin of
this phenomenon, there are several possibilities associated
with different mechanisms. In the case of the repulsive
TLL state, it is possible that the conductance near pinch-
off is suppressed and that this could give rise to power-law
temperature-dependent variations of the conductance. Previous
investigations of the TLL state in 1D systems have focused on
the manifestations of such power-law behavior in the quantized
conductance steps. In our experiment, the channel-length
dependence of the resonances is consistent with the fact that
the interaction strength depends on the channel length. Other
possible mechanisms, however, are the formation of a spin gap
or an insulating state. The energy gap of a 1D Heisenberg
anti-ferromagnet chain, having integer spin (S = 1), is well
known as the Haldane gap [42]. More recently, a striking
transition from a conducting to an insulating state has been
reported, and related to the possible formation of a Wigner
crystal or a charge-density wave [43]. The formation of an
energy gap, or some insulating state, are also considered to
be reasonable candidates to explain our results, although more
investigations are needed to conclusively determine the origins
of the behavior we observe.

In conclusion, we have observed a strong resonant-peak
structure in the differential conductance of long quantum wires
under non-linear conditions. The peaks appear to reflect an
energy-dependent transition in the wire at low temperatures.
Our observations appear consistent with the opening of a gap in
the electronic spectrum at low temperatures, which is manifest
directly in the temperature-dependent I –V characteristics. The
differential conductance resonances having a 1D-DOS like line
shape may arise from a breakdown of the cancelation of the
1D DOS in the subband currents. The appropriate theoretical
description of these remarkable and unique transport features

should account for the detailed phenomenological features
mentioned above. Since we are unaware of prior reports
of this phenomenon, these results should be important to
understanding the role of electron interactions in 1D systems.
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